181 research outputs found

    Antibody-based Validation of CNS Ion Channel Drug Targets

    Get PDF

    Benefits and Pitfalls of Secondary Antibodies: Why Choosing the Right Secondary Is of Primary Importance

    Get PDF
    Simultaneous labeling of multiple targets in a single sample, or multiplexing, is a powerful approach to directly compare the amount, localization and/or molecular properties of different targets in the same sample. Here we highlight the robust reliability of the simultaneous use of multiple mouse monoclonal antibodies (mAbs) of different immunoglobulin G (IgG) subclasses in a wide variety of multiplexing applications employing anti-mouse IgG subclass-specific secondary antibodies (2°Abs). We also describe the unexpected finding that IgG subclass-specific 2°Abs are superior to general anti-mouse IgG 2°Abs in every tested application in which mouse mAbs were used. This was due to a detection bias of general anti-mouse IgG-specific 2°Abs against mAbs of the most common mouse IgG subclass, IgG1, and to a lesser extent IgG2b mAbs. Thus, when using any of numerous mouse mAbs available through commercial and non-profit sources, for cleaner and more robust results each mAb should be detected with its respective IgG subclass-specific 2°Ab and not a general anti-mouse IgG-specific 2°Ab

    Heterogeneity in Kv2 Channel Expression Shapes Action Potential Characteristics and Firing Patterns in CA1 versus CA2 Hippocampal Pyramidal Neurons.

    Get PDF
    The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotransmission between CA1 and CA2 PNs. In the present study, we used multiplex fluorescence immunolabeling of mouse brain sections, and whole-cell recordings in acute mouse brain slices, to define the role of heterogeneous expression of Kv2 family Kv channels in CA1 versus CA2 pyramidal cell excitability. Our results show that the somatodendritic delayed rectifier Kv channel subunits Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have region-specific differences in expression in PNs, with the highest expression levels in CA1, a sharp decrease at the CA1-CA2 boundary, and significantly reduced levels in CA2 neurons. PNs in CA1 exhibit a robust contribution of Guangxitoxin-1E-sensitive Kv2-based delayed rectifier current to AP shape and after-hyperpolarization potential (AHP) relative to that seen in CA2 PNs. Our results indicate that robust Kv2 channel expression confers a distinct pattern of intrinsic excitability to CA1 PNs, potentially contributing to their different roles in hippocampal network function

    βSubunits Promote K+ Channel Surface Expression through Effects Early in Biosynthesis

    Get PDF
    AbstractVoltage-gated K+ channels are protein complexes composed of ion-conducting integral membrane α subunits and cytoplasmic β subunits. Here, we show that, in transfected mammalian cells, the predominant β subunit isoform in brain, Kvβ2, associates with the Kv1.2 α subunit early in channel biosynthesis and that Kvβ2 exerts multiple chaperone-like effects on associated Kv1.2 including promotion of cotranslational N-linked glycosylation of the nascent Kv1.2 polypeptide, increased stability of Kvβ2/Kv1.2 complexes, and increased efficiency of cell surface expression of Kv1.2. Taken together, these results indicate that while some cytoplasmic K+ channel β subunits affect the inactivation kinetics of α subunits, a more general, and perhaps more fundamental, role is to mediate the biosynthetic maturation and surface expression of voltage-gated K+ channel complexes. These findings provide a molecular basis for recent genetic studies indicating that β subunits are key determinants of neuronal excitability
    • …
    corecore